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* Fonctions thermodynamiques.
o Coefficients calorimétriques
o Potentiels thermodynamiques

Willard Gibbs
1839 - 1903

Francgois Massieu
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Y atilb uwn choix de variables d'étaty et de fonction d étak,
mieur adapte qu uwnw autre v unw probleme donné ?

Choix des coefficienty élostiques et calorimetriques ?

Que peut o dirve dons uv cas plus genéral quand :
o Lle systeme peut échanger de law matiere
o Letravail prend d autres formes que -pdV
o Onww affaire v autre chose quuv gag parfait
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Cours 6 : compléments ou rappels mathématiques |

PG : Thermodynamique

Différentielle d'une fonction de plusieurs variables

df:(g—i) dx+(a—fj dy

o Les dérivées partielles croisées du second ordre sont égales (théoréme de Schwartz)

af  f
dxdy dyox

df = P(x,y)dx +Q(x,y)dy (a_Q) :(

8P] = relations de Maxwell
ox

5 (voir suite du chapitre)

« Siilyanvariables x;aveci=1...n

flx,..x,)
df = X,(x,,...,x,)dx, + ..+ X.(x,,...x )dx, + ..+ X (x,,....x,)dx,

J°f Jf’ 0X, 0JX, o
— I — J \vl
axox, oxax ox ox )
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Compléments ou rappels mathématiques |

Différentielle d'une fonction de plusieurs variables

o Variables liées par une relation (fonction d'état) f(x,y,z)=0

f(x,y,z)=0 implique qu'il existe des relations entre une variable et les deux autres :
x(y,2); y(x.2) et z(x,y)

ox ox dy ayj
X (a)’l y+(azjy Z ay (az)x Z+(ax Z X
dx | (dy ox 0x (8)})
dx=||— || = — | |d =\ d
. Hayl(az)x+(az)y] Z+(8yl ox ). *
D EREEEE
yzaxz_ ayzazxaxy_

Remarque : = relations entre coefficients calorimétriques (voir suite du chapitre)

PG : Thermodynamique Cours 14 4/39
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Cours 1 : Equation et fonction d'état

 Fonction d'état

systeme considéré

Fonction qui ne dépend que des variables d'état d'un systeme
o Conséquence importante : sa valeur est indépendante du procédé
utilisé pour arriver dans cet état, elle ne dépend que de ['état du

Exemples : énergie interne U
entropie S
enthalpie H

 Variable d’état ou bien fonction d'état ?

o Equation d'état.

f(p,V.T)=0= p(V.T);V(p,T);T(p,V)

o La distinction entre variable et fonction d’état est arbitraire.

« P estunefonctiond’étatde T etV
 ou bien T est une fonction d’état de P et V.

PG : Thermodynamique
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Fonctions thermodynamiques

 Variable d’état ou bien fonction d'état ?

o ldem pour les autres fonctions d'état.
U(V,T) ouU(p,T) ouU(p,V) etc.
H(V,T)ouH(p,T) etc.
S(V,T) ouS(p,T) etc.

o Mais on pourrait tout aussi bien choisir U, H ou S comme variables d'état. Par
exemple en choisissant S et p :

T(S,p);U(S,p); V(S,p); H(S,p) etc..

o Quel choix de variables et de fonction d'état est le mieux adapté au probléme que
I'on veut étudier ?

PG : Thermodynamique Cours 14 6/39
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Fonctions thermodynamiques

* Energie interne, U

o Relation fondamentale de la thermodynamique : dU =TdS — pdV

o Avec cette écriture, U apparait comme une

fonction des deux variables d'état S et V. u@s.v)
Avec les grandeurs conjuguées : T = (B_U) p= _(a_Uj
as )y v )
Relation de Maxwell : (a_p) :_(a_T)
aS \% aV S

PG : Thermodynamique Cours 14 7/39
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Fonctions thermodynamiques

 Autres choix de variables

Il est commode de choisir des fonctions d'états qui dépendent de variables d'états
qui sont constantes ou bien sur lesquelles on peut agir (dans le contexte du
phénomene que I'on veut étudier).

« Enthalpie, H, fonction d'état adaptée aux variables S et p

C'est ce que I'on a fait en définissant I'enthalpie pour changer de la variable V a p.

H=U+pV
dH =TdS +Vdp
Avec les grandeurs conjuguées : T = (B_H) V= o
dS ) ap :
Relation de Maxwell : (B_V] = or
S ), \dp )

PG : Thermodynamique
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Fonctions thermodynamiques

Mathématiquement parlant, la technique utilisée pour créer ces nouvelles fonctions
dépendant des variables désirées, s'appelle une transformation de Legendre.

« Energie libre, F, fonction d'état adaptée aux variables T et V

F=U-TS
dF = —SdT — pdV

Avec les grandeurs conjuguées : S = _(B_Fj p= _(B_F)
aT ), aV ),

Relation de Maxwell : (85) — (E)_pj
T v

k1% T
\Déterminé uniqguement par

I'équation d'état du systeme.

PG : Thermodynamique

Cours 14 9/39



I
o
"1
r

Fonctions thermodynamiques

PG : Thermodynamique

Enthalpie libre, G, fonction d'état adaptée aux variables T et p

Avec les grandeurs conjuguées :

Relation de Maxwell :

G=H-TS

dG =—SdT +Vdp

¢ _(aa)
oT
p

2

96
dp

)

|

as
dp

=

o)
oT ),

\Déterminé uniqguement par

I'équation d'état du systeme.

Cours 14 10/39
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Y a €l uww choix de vawialles d éetaty et de fonctiow d étak,
mieux adapte quunw autire av uv probleme donné ?

Choix des coefficienty élastiques et calorimeétriques ?

Que peut o dirve dons uv cas plus genéral quand :
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Coefficients thermoélastiques et calorimétriques

Cours 1, coefficients thermoélastiques de dilatation et de compression

o _L(B_V) u _i(a_Pj c __i(a_V)
"vler), T plor), " vier),

Ces coefficients ne sont pas indépendants, la connaissance de deux suffit

() GRU5), =t = onmro
or ),\oP ), \ oV ). v PR

rV(P T) dV = i dpP + i dT = —VirdP + Va,dT
’ - (6P)T (aT)p = TVKrdl At Vay
lpv. ) dv:(a—P) dv+(a—P) 0T = —— av + & ar
’ aV T aT vV VKT KT
T(P,V) dT = (a—T) dP+(a—T) dV=K—TdP+LdV
L ’ GP 1% aV P aV VO(V

PG : Thermodynamique Cours 14 12/39



=P-L Coefficients thermoélastiques et calorimétriques

Q n'est pas une fonction d'état. 6Q n'est pas une différentielle totale. On ne peut

pas écrire :
s0-(22) ar+(22) av
aP ), v J,
Par contre on peut écrire avec les variable T,V ou T,P ou P,V:
( BN EN
00, =TdS=T 8_S dr +T B_S dV =C,dT +1dV C,=T| — :T(_)
oT ), aV ), oT ), v ).
100, =TdS=T 8_S dlr +T a—S dP=C,dT +kdP avec |C,=T B_S k:T(a—Sj
T ), P ). T ), P ),
oS oS
6Qrev:TdS:T 8_S dP‘I'T a_S dV:;l«dP+‘LLdV )«zT(—j M:T(—j
L aP %4 aV P aP 1% aV P

| et k sont appelées chaleur latente, chaleur nécessaire pour faire varier S a V ou T constant
(Ne pas confondre avec chaleur latente de changement d'état.

}3\ nouveau ces coefficients ne sont pas indépendants, la connaissance de deux suffit. On
choisit en général C, et C,. Exercice : avec l'aide des relations de Maxwell, exprimer |, k, A et

u en fonction de C,, C, et les coefficients thermoélastiques.
PG : Thermodynamique Cours 14 13/39
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Coefficients thermoélastiques et calorimétriques

Ce qui justifie et généralise maintenant pleinement les expressions de C, et C, du cours 6.

dU:(gQreV(T’V))_pdV:CVdT+(l_p)dV CV = g—U)
)y
0H
dH =(60,,(T,P))+Vdp =C,dT +(k+V)dP Cr= a_T)
P

Les relations de Maxwell : (8_5] :(B_pj (B_Sj :_(B_V)
ov )y \oT ), \dp), \dT),

Permettent d'écrire les premiere et deuxieme relations de Clapeyron :

dp (av)
= — k=-T| — ’ 3 di = =
[ T(aT jv 3T ) C'est a dire I=Tpa, et k=-TVa,

| et k dépendent uniquement de I'équation d'état du milieu

PG : Thermodynamique

Cours 14 14/39



Coefficients thermoélastiques et calorimétriques

Exemple : analyse thermodynamique d'un fil élastique

Expérience du quotidien :
o Quand on tire avec une force f sur un fil élastique, sa longueur | change
o Quand on chauffe ou refroidit le fil, la température T et sa longueur | change

Il y a deux manieres de faire varier | : en agissant avec T ou bien avec f
o Les deux phénoménes doivent étre liés par des coefficients communs
o On aidentifié les variables d'état T, f et |

Le fil a une longueur | déterminée par T et f
o |l existe une fonction d'état dufil : g(I, T, f)=0

dl:[ﬂ) df + oY ar
T

df oT ),

3f of
df =| — | dl+| —=— | dT
/ (all Har),

PG : Thermodynamique

\

oT oT
dl = (E)f dl + (ﬁl df
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Coefficients thermoélastiques et calorimétriques

Exemple : analyse thermodynamique d'un fil élastique

Six coefficients thermoélastiques reliés entre eux par les relations entre dérivées
partielles. Deux seulement suffisent car on a :

[

VN

-

PG : Thermodynamique

"

8_fj (B_Tj a)
of )\ dl J,\df ),

On utilise souvent les coefficients de dilatation thermique, q,;, et le module d'élasticité en
traction du matériau (module de Young), E1, (s : section du fil)

a—l(ﬂj E—l
\ar ), T

dl=——af +ioar

sk,

df = S‘ZET dl — sE, o,dT
ar = a—-— g
la, sE. .«

Cours 14 16/39



=P-L Coefficients thermoélastiques et calorimétriques

Exemple : analyse thermodynamique d'un fil élastique
« Coefficients calorimétriques.

(dU =TdS + fdl Energie interne
dH =TdS - ldf H=U-{l Enthalpie

dF =-SdT + fdl F=U-TS Energie libre
dG = —SdT — ldf G=H-TS Enthalpie libre

« Les variables sur lesquelles on peut agir facilement sont T et f : La fonction thermodynamique la mieux
adaptée est I'enthalpie libre, G(T,f).

« Autrement dit on est intéressé a la variation de | avec T ou f, c’est a dire (dl/dT); ou (dl/of)r donc il faut choisir
la fonction d’état dont les variables naturelles sont T et f : c’est G.

Relation de Maxwell a partir de G : (85) = (ﬂ) =la,
f

of ) \ar
» Fil métallique : le désordre cristallin augmente quand f et | croissent (dS ) _( dl ) _ lor >0
Un fil métallique s'allonge quand on le chauffe, a f constant. df ), \dT J, :
« Fil polymére : le désordre diminue quand f et | croissent 98} _( ol o <0
Un fil en caoutchouc rétrécit quand on le chauffe, a f constant. df ), \dT ), l

PG : Thermodynamique Cours 14 17/39



=P-L Coefficients thermoélastiques et calorimétriques

Exemple : analyse thermodynamique d'un fil élastique

« Coefficients calorimétriques.

Autre expérience de cours ou on mesure la force, f, a longueur constante, on
prend I'énergie libre, F(T,l) dont les variables naturelles sont T et |I.

Energie libre dF =-SdT + fdl

Relation de M Il 2 tirde F (65) (af> E
elation de Maxwell a partirde F: —(—) = (-] = —sE.a
P at), ~ \a1/, T
(55) [ (55) Donc si S croit ou décroit de maniére similaire
donc | —= | =—\|= 1(of
dof /. sEr\dl/y  avecfetlalors Eﬁ;fgﬁ >0

« Fil métallique : le désordre cristallin augmente quand f et | croissent
- f diminue quand on chauffe a | constant
Le poids indiqué par la balance P = mg-f augmente.

* Fil polymére : le désordre diminue quand f et | croissent aS
- f augmente quand on chauffe a | constant — (—)
Le poids indiqué par la balance P = mg-f diminue.

= (ﬁ) = —SsE;a; >0

PG : Thermodynamique Cours 14 18/39



Coefficients thermoélastiques et calorimétriques

PG : Thermodynamique

Exemple : analyse thermodynamique d'un fil élastique

Coefficients calorimétriques.

O

O

O

Capacité calorifique pratique : dT a force de traction constante
On s’intéresse a la fonction d’état qui s’apparente le plus a 8Q, c’est TdS
Choix des variables pour TdS : on cherche sa variation avec T et f qui sera
constant, donc on veut exprimer TdS avec les variables T et f. Cela va nous
donner une premiére expression de C;.
Pour une autre expression de la capacité calorifique C;, on le reporte dans la
fonction thermodynamique qui a du TdS et du df, c’est H. Cela va nous donner
une deuxieme expression de C;.

dS oS ol

00 . =TdS=T| — | dT+T| — | df =CdT+T| — | df =C,dT +Tla,d
Qrev (aij + [aij f f + (aij f f + al f

dH =TdS - ldf =CdT +1(Ta, - 1)df

()
or ), \or ),

Cours 14 19/39



=P-L Coefficients thermoélastiques et calorimétriques

Exemple : analyse thermodynamique d'un fil élastique

« Coefficients calorimétriques.
Suggestion d’exercice : établir des relations semblables pour C,

Indication :

* Pour C;, on va exprimer TdS en fonction de dT et dl, ce qui donne une premiére
expression de C,.

* On le reporte dans la fonction thermodynamique qui a du TdS et du dl, c’est U,
ce qui donne une deuxieme expression de C,.

* On peut aussi écrire une relation de Maxwell impliquant (8S/dl)y, et les
coefficients thermoélastiques du matériau, pour cela il faut choisir la fonction
thermodynamique qui a | et T comme variables naturelles, c’est F.

« Traction adiabatique réversible d'un fil élastique. dS =0 :

CdT+Tlodf =0 — IL__I1%,
f + Ollf— = T——C—ff

Un fil métallique se refroidit quand on l'allonge ( a, >0)
Un fil en caoutchouc se réchauffe quand on l'allonge ( o, <0)

PG : Thermodynamique Cours 14 20/39
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Coefficients calorimétriques

On pourrait faire le méme genre d'analyse avec :

Une pile

Un milieu magnétique

Une membrane élastique

Des spins dans un champs magnétique
Un écosysteme

L'économie

Une étoile

O O O O O O O O

PG : Thermodynamique Cours 14 21/39



“PFL Les objectifs dw cours 14

Y a €l uww choix de vawialles d éetaty et de fonctiow d étak,
mieur adapte quuwnw autre av uw probléeme donné ?

Choix des coefficienty élostiques et calorimetriques ?

Que peut ow dive dans un cas plug genéral quand :
o Lle systeme peut échanger de law matiere
o Letravail prend d autres formes que -pdV
o Onwa affaire o autre chose quuww gag parfait

PG : Thermodynamique
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Compléments ou rappels mathématiques Il

Fonctions homogénes (rappel exercice cours d'Analyse Il)

o Définition, fonction homogéne d'ordre k :

FAx,; ,Ax,..Ax)= A" f(x,,x,..x,)

o Théoréme d'Euler : une fonction est homogene d'ordre k si et seulement si :

n

of
;Xi a_xl =kf(x,,%,..X )

o Pourk=1:

N\, 9/
f({'xizl...n }) = ;xi ox.

PG : Thermodynamique Cours 14 23/39



N
-

i
r

Systémes ouverts

Il devient important de bien compter toutes les variables d'états :

Les variables extensives "naturelles" pour I'énergie interne, U, sont
dU =TdS — pdV »
P I'entropie S et le volume V : U(S,V)

En toute généralité, le systéme est aussi matériel, donc U dépend aussi
nécessairement de la quantité de matiére (masse, m ou nombre de particules, n ou
nombre de moles, N) : U(S,V,n)

Cours 1;

Systéme ouvert : le systéme
échange de la matiere et de
'énergie avec l'extérieur. energie
travail ou chaleur

Y atomes

PG : Thermodynamique Cours 14 24/39
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Systémes ouverts

* Energie interne, U

 L'échange de matiére avec l'extérieur ou bien du méme corps entre deux phases
différentes a un colt énergétique proportionnel a la quantité de matiére échangée, dn.
Le coefficient de proportionnalité s'appelle le potentiel chimique, p :

« La différentielle de I'énergie interne s'écrit :
dU =TdS —pdV + udn
» Lorsqu'il y a plusieurs especes chimiques (qui entrent/sortent du systéme ou bien qui

apparaissent/disparaissent dans le cas de changements de phase ou de réactions
chimiques) :

dU =TdS - pdV + Y’ u,dn, Equation de Gibbs
k

aS V. P aV Sy, M ank SV

Note : attention aux unités. Selon les domaines p est exprimé par moles udN, par
molécules udn ou par unité de masse pydm

PG : Thermodynamique Cours 14 25/39
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Systemes ouverts

* Energie interne, U

o U(S,V,n) est une fonction homogéne de degré 1.

Théoréme d'Euler : U=S a_U +V 8_U +2n B_U
as ), av ). 4 ¥\ on .

k

U= TS—PV*‘ZM’% Equation entiére ou Equation entiére de Gibbs
k

PG : Thermodynamique Cours 14 26/39
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Fonctions thermodynamiques

* Energie interne, U

En différentiant I'équation entiere de Gibbs :

dU =TdS +SdT — pdV —Vdp+ Y u.dn, + Y ndu,
k k

Or:  qu=TdS-pdV+ ) pdn,
k

N SdT —Vdp+Y n,du, =0 Equation de Gibbs-Duhem
k

PG : Thermodynamique Cours 14 27/39
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Fonctions thermodynamiques

U=TS-pV + Zﬂknk Equation entiére de Gibbs
k

SdT —Vdp+ Y n.du, =0 Equation de Gibbs-Duhem
k

Jusque ici on s'intéressait uniquement a des variations d'entropie AS. L'équation entiére
nécessite de définir une valeur absolue pour l'entropie :

Troisieme principe de la thermodynamique (Postulat de Nernst-Planck) :
L'entropie d'un corps pur tend vers 0 quand la température tend vers 0 K.

Remarque 1 : Pour que l'entropie ne diverge pas quand la 05Q OC(T)dT
température tend vers 0, cela implique que la capacité IT =J T
calorifique de tout systeme tend vers 0 avec T. L T

converge = 1T1rr(} C(T)=0

Remarque 2 : L'impossibilité d'atteindre la température du 0 absolu est une conséquence du
troisieme principe de la thermodynamique.

PG : Thermodynamique Cours 14 28/39
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Systemes ouverts

Et avec la méme démarche :

Energie interne
Enthalpie
Energie libre
Enthalpie libre

Grand potentiel

Entropie

PG : Thermodynamique

Forme entiere

U=TS-pV+> un,
k
H=U+pV=TS+) un,
k

F=U—TS=—pV+Z],tknk
k

G=H—TS=2yknk
k

D, :U—TS—anptk

k

u pv 1
§=—-£ 4 n
T T Tg'”""

Forme différentielle

dU =TdS— pdV + Y u,dn,
k
dH =TdS+Vdp+ ) u,dn,
k
dF =—=SdT — pdV + Y pdn,
k
dG =—-SdT +Vdp + Zﬂkdnk
k

d®, =-SdT — pdV - Y n.du,
k

1 p |
dS=—dU+<5dV —— dn
T T T;”" g

Cours 14 29/39
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Systemes ouverts

Potentiel chimique :

'l k= N kTN,
ank SV hyg ank TV ank P.S .k

0G A
M= 5" =T ==
" P.T 1

Relations de Maxwell :

a_pj :_(B_T) (BL) __[9r
S Jy WV Jsu NV Js,, on, SV i

dp Ty Jn, pT or P on, PT sk

... et beaucoup d'autres ...

PG : Thermodynamique Cours 14 30/39
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Signification physique de AU, AH, AF, AG

Systéme ferme, en contact avec un thermostat unique a la température T,, échangeant
un travail W lors d'une transformation. Les températures initiales et finales sont T,, mais
peuvent étre différentes durant la transformation.

AU=Q+W
-Q W-AU
Réservoir de chaleur @ T, AS, = TQ =
B D 0 0
AS,, =AS, +AS= W-AU  As>0

0

W=AU-T AS+T AS,
W=AF+T,AS,
W 2AF

=W <-AF

moteur

* Lors d'une transformation isotherme, AF est le travail minimum nécessaire pour
effectuer la transformation.

» Lors d'une transformation isotherme, AF est le travail maximum que peut fournir le
systéme lors de la transformation.

« Lors d'un cycle AF=0, on retrouve l'interdit de Kelvin : W ,onotherme = 0

PG : Thermodynamique Cours 14 31/39
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Equilibre et potentiel thermodynamique

Evolution spontanée d'un systéme fermé a volume et température constants.

Réservoir de chaleur @ T,
S

SW =dF +T,dS,,
Jo SW > dF

SW =0
s 0F e 0

Un systéme fermé a volume et température constants évolue spontanément de sorte a
minimiser son énergie libre. L'énergie libre joue le réle d'une énergie potentielle.

Exemple :

To
P4

Volume total fixe P,
Paroi mobile

PG : Thermodynamique Cours 14 32/39
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Signification physique de AU, AH, AF, AG

Systéme fermé, en contact avec un unique réservoir de chaleur (thermostat) a la
température T, et un réservoir de travail (isobare, Py) échangeant un travail utile W, lors
d'une transformation. Les températures et pression initiales et finales sont P et Ty, mais
peuvent étre différentes durant la transformation.

AU=Q+W, —P, AV

Réservoir de chaleur @ T, AS _—Q W —-PAV-AU
OS850 8 BD Th T B T
W —P AV-AU
Q AS,  =AS +AS=—""20 +AS=0
0
W, W =AU+PAV—T AS+T AS,
W,=AG+T,AS,,
Réservoir de W 2AG
travail @ P _
° u,moteur __Wu S_AG

» Lors d'une transformation isotherme et isobare, AG est le travail nécessaire minimum
a fournir pour effectuer la transformation.

» Lors d'une transformation isotherme et isobare, AG est le travail maximum que peut
fournir le systéme lors de la transformation. Exemple : une pile électrique, une
réaction chimique a P et T constant

PG : Thermodynamique
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Equilibre et potentiel thermodynamique

PG : Thermodynamique

Evolution spontanée d'un systéme fermé a pression et température constants.

Réservoir de chaleur @ T,

SIS, v

SW, =dG +T,dS,,

SW, >dG

SW, =0

dG . <0
RéserVOir de spontanée
travail @ P,

Un systéme fermé a pression et température constants évolue
spontanément de sorte a minimiser son enthalpie libre.
L'enthalpie libre joue le réle d'une énergie potentielle.

Pression fixe
Parois mobiles

Cours 14 34/39
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Equilibre et potentiel thermodynamique

De la méme maniere :

Un systéme fermé a volume et entropie constants P,
<0 évolue spontanément de sorte a minimiser son
spontanée — , . 'z . . A ' Volume total fixe P2

énergie interne. L'énergie interne joue le réle d'une Paroi mobile

énergie potentielle.

dU

Un systéme fermé a pression et entropie

AH constants évolue spontanément de sorte
dH spontanée <0 S T . ' . F)
a minimiser son enthalpie. L'enthalpie 2

Réservoir de joue le réle d'une énergie potentielle.
travail @ P,
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Equilibre et potentiel thermodynamique

e Résumé:
Variables "naturelles”
Potentiel thermodynamique pour un systéme fermé
quand ses variables "naturelles" sont constantes.
Variables conjuguées P Vv
Intensive | Extensive Enthalpie libre G Energie libre F
T dGspontané <0 dFspontané <0
P vV G minimum F minimum
T s Enthalpie H Energie interne U
S stpontané <0 dUspontané <0
H minimum U minimum
M n

Pour un systéme ouvert, quelque soit les conditions
opératoires la condition d'évolution spontanée devient :

Zptkdnk <0
k
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=P-L Equilibre et potentiel thermodynamique

Exemple : osmose

Etat initial Etat final

U
N .-

membrane semi-perméable produits dis

A CPFL

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

u=pu(0)+RTLn(1-x)

X : concentration molaire du soluté

PG : Thermodynamique Cours 14 37/39



“PFL L'essentiel dw cours 14
Fonctions thermodynamiques
Relations de Maxwell
Potentiel chimique
Equation entiere de Gibbs
Equation de Gibbs-Duhem
B Potentiel thermodynamique
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“PFL Expériences de cours

Expériences auditoires EPFL : auditoires-physique.epfl.ch
Chaine YouTube : www.youtube.com/channel/UC4htKGFCRRkFylgAo8DGocg

(1

condill, | L 221
P L UL

Effet thermo-élastique Osmose

Contraction du caoutchouc
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C'est finul !

Bovue chawnce et tous mes vaeux de
reussite pour Uexamenv

A theory is the more impressive the greater the simplicity of its premises, the more different kinds of things it relates, and the more
extended its area of applicability. Therefore the deep impression that classical thermodynamics made upon me. It is the only physical
theory of universal content which | am convinced will never be overthrown, within the framework of applicability of its basic concepts.

Albert Einstein
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