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1 Y a t'il un choix de variables d'états et de fonction d'état, 
mieux adapté qu'un autre à un problème donné ?

3 Que peut on dire dans un cas plus général quand :
o Le système peut échanger de la matière
o Le travail prend d'autres formes que –pdV
o On a affaire à autre chose qu'un gaz parfait

2 Choix des coefficients élastiques et calorimétriques ?

Les objectifs du cours 14

PG : Thermodynamique Cours 14 2/39



Différentielle d'une fonction de plusieurs variables

o Les dérivées partielles croisées du second ordre sont égales (théorème de Schwartz)

Cours 6 : compléments ou rappels mathématiques I

df = ∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟ y
dx + ∂ f

∂y
⎛
⎝⎜

⎞
⎠⎟ x
dy

∂2 f
∂x∂y

= ∂2 f
∂y∂x

df = P(x, y)dx +Q(x, y)dy ∂Q
∂x

⎛
⎝⎜

⎞
⎠⎟ y

= ∂P
∂y

⎛
⎝⎜

⎞
⎠⎟ x

⇒ relations de Maxwell

    (voir suite du chapitre)

• Si il y a n variables xi avec i = 1 … n

f (x1,..., xn )
df = X1(x1,..., xn )dx1 + ...+ Xi (xi ,..., xn )dxi + ...+ Xn (xi ,..., xn )dxn

∂2 f
∂xi ∂x j

= ∂ f 2

∂x j ∂xi

∂Xi

∂x j
=
∂Xj

∂xi
∀(i, j)
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Différentielle d'une fonction de plusieurs variables

Compléments ou rappels mathématiques I

o Variables liées par une relation (fonction d'état) f(x,y,z)=0

f(x,y,z)=0 implique qu'il existe des relations entre une variable et les deux autres :

x(y,z); y(x,z) et z(x,y)

dx = ∂x
∂y

⎛
⎝⎜

⎞
⎠⎟ z
dy + ∂x

∂z
⎛
⎝⎜

⎞
⎠⎟ y
dz dy = ∂y

∂z
⎛
⎝⎜

⎞
⎠⎟ x
dz + ∂y

∂x
⎛
⎝⎜

⎞
⎠⎟ z
dx

dx = ∂x
∂y

⎛
⎝⎜

⎞
⎠⎟ z

∂y
∂z

⎛
⎝⎜

⎞
⎠⎟ x

+ ∂x
∂z

⎛
⎝⎜

⎞
⎠⎟ y

⎛

⎝⎜
⎞

⎠⎟
dz + ∂x

∂y
⎛
⎝⎜

⎞
⎠⎟ z

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟ z
dx

∂x
∂y

⎛
⎝⎜

⎞
⎠⎟ z

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟ z

= 1 ∂x
∂y

⎛
⎝⎜

⎞
⎠⎟ z

∂y
∂z

⎛
⎝⎜

⎞
⎠⎟ x

∂z
∂x

⎛
⎝⎜

⎞
⎠⎟ y

= −1

Remarque : ⇒ relations entre coefficients calorimétriques (voir suite du chapitre) 
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• Fonction d'état

Fonction qui ne dépend que des variables d'état d'un système

o Conséquence importante : sa valeur est indépendante du procédé 

utilisé pour arriver dans cet état, elle ne dépend que de l'état du 

système considéré

Exemples : énergie interne U
   entropie S
                  enthalpie H

Cours 1 : Equation et fonction d'état

o La distinction entre variable et fonction d’état est arbitraire.

• P est une fonction d’état de T et V

• ou bien T est une fonction d’état de P et V. 

• Variable d’état ou bien fonction d'état ?

o Equation d'état. 

f (p,V ,T ) = 0⇒ p V ,T( );V p,T( );T p,V( )
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Fonctions thermodynamiques

• Variable d’état ou bien fonction d'état ?

o Idem pour les autres fonctions d'état. 

U V ,T( )  ou U p,T( )  ou U p,V( )  etc.
H V ,T( )  ou H p,T( )  etc.
S V ,T( )  ou S p,T( )  etc.

o Mais on pourrait tout aussi bien choisir U, H ou S comme variables d'état. Par 

exemple en choisissant S et p :

T (S, p) ; U(S, p) ; V(S, p) ; H(S, p) etc..

o Quel choix de variables et de fonction d'état est le mieux adapté au problème que 

l'on veut étudier ?
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Fonctions thermodynamiques

• Energie interne, U

o Relation fondamentale de la thermodynamique :

o Avec cette écriture, U apparaît comme une 

fonction des deux variables d'état S et V.

Avec les grandeurs conjuguées :

Relation de Maxwell :

dU = TdS − pdV

U(S,V )

T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V

p = − ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S

∂p
∂S

⎛
⎝⎜

⎞
⎠⎟V

= − ∂T
∂V

⎛
⎝⎜

⎞
⎠⎟ S
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• Autres choix de variables

Il est commode de choisir des fonctions d'états qui dépendent de variables d'états 

qui sont constantes ou bien sur lesquelles on peut agir (dans le contexte du 

phénomène que l'on veut étudier).

Fonctions thermodynamiques

• Enthalpie, H, fonction d'état adaptée aux variables S et p

C'est ce que l'on a fait en définissant l'enthalpie pour changer de la variable V à p.

Avec les grandeurs conjuguées :

Relation de Maxwell :

T = ∂H
∂S

⎛
⎝⎜

⎞
⎠⎟ p

V = ∂H
∂p

⎛
⎝⎜

⎞
⎠⎟ S

∂V
∂S

⎛
⎝⎜

⎞
⎠⎟ p

= ∂T
∂p

⎛
⎝⎜

⎞
⎠⎟ S

H =U + pV
dH = TdS +Vdp
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Mathématiquement parlant, la technique utilisée pour créer ces nouvelles fonctions 

dépendant des variables désirées, s'appelle une transformation de Legendre.

Fonctions thermodynamiques

• Energie libre, F, fonction d'état adaptée aux variables T et V

Avec les grandeurs conjuguées :

Relation de Maxwell :

S = − ∂F
∂T

⎛
⎝⎜

⎞
⎠⎟V

p = − ∂F
∂V

⎛
⎝⎜

⎞
⎠⎟ T

∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ T

= ∂p
∂T

⎛
⎝⎜

⎞
⎠⎟V

F =U −TS
dF = −SdT − pdV

Déterminé uniquement par 

l'équation d'état du système.
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Fonctions thermodynamiques

• Enthalpie libre, G, fonction d'état adaptée aux variables T et p

Avec les grandeurs conjuguées :

Relation de Maxwell :

	
S = − ∂G

∂T
⎛
⎝⎜

⎞
⎠⎟ p

V = ∂G
∂p

⎛
⎝⎜

⎞
⎠⎟ T

∂S
∂p

⎛
⎝⎜

⎞
⎠⎟ T

= − ∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ p

G = H −TS
dG = −SdT +Vdp

Déterminé uniquement par 

l'équation d'état du système.
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1 Y a t'il un choix de variables d'états et de fonction d'état, 
mieux adapté qu'un autre à un problème donné ?

3 Que peut on dire dans un cas plus général quand :
o Le système peut échanger de la matière
o Le travail prend d'autres formes que –pdV
o On a affaire à autre chose qu'un gaz parfait

2 Choix des coefficients élastiques et calorimétriques ?

Les objectifs du cours 14
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Coefficients thermoélastiques et calorimétriques 

Cours 1, coefficients thermoélastiques de dilatation et de compression 

αV = 1
V

∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P

αP =
1
P

∂P
∂T

⎛
⎝⎜

⎞
⎠⎟V

κ T = − 1
V

∂V
∂P

⎛
⎝⎜

⎞
⎠⎟ T

Ces coefficients ne sont pas indépendants, la connaissance de deux suffit

∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P

∂T
∂P

⎛
⎝⎜

⎞
⎠⎟V

∂P
∂V

⎛
⎝⎜

⎞
⎠⎟ T

= −1 ⇒ αV = pαPκ T
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Coefficients thermoélastiques et calorimétriques 

Q n'est pas une fonction d'état. δQ n'est pas une différentielle totale. On ne peut 
pas écrire :

δQ = ∂Q
∂P

⎛
⎝⎜

⎞
⎠⎟V
dP + ∂Q

∂V
⎛
⎝⎜

⎞
⎠⎟ P
dV

Par contre on peut écrire avec les variable T,V ou T,P ou P,V:

δQrev = TdS = T
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟V
dT +T ∂S

∂V
⎛
⎝⎜

⎞
⎠⎟ T
dV = CVdT + ldV

δQrev = TdS = T
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟ P
dT +T ∂S

∂P
⎛
⎝⎜

⎞
⎠⎟ T
dP = CPdT + kdP

δQrev = TdS = T
∂S
∂P

⎛
⎝⎜

⎞
⎠⎟V
dP +T ∂S

∂V
⎛
⎝⎜

⎞
⎠⎟ P
dV = λdP + µdV

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

avec

CV = T ∂S
∂T

⎛
⎝⎜

⎞
⎠⎟V

l = T ∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ T

CP = T
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟ P

k = T ∂S
∂P

⎛
⎝⎜

⎞
⎠⎟ T

λ = T ∂S
∂P

⎛
⎝⎜

⎞
⎠⎟V

µ = T ∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ P

l et k sont appelées chaleur latente, chaleur nécessaire pour faire varier S à V ou T constant 

(Ne pas confondre avec chaleur latente de changement d'état.

).  
A nouveau ces coefficients ne sont pas indépendants, la connaissance de deux suffit. On 

choisit en général Cp et Cv. Exercice : avec l'aide des relations de Maxwell, exprimer l, k, λ et 

µ en fonction de Cp, Cv et les coefficients thermoélastiques.
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Coefficients thermoélastiques et calorimétriques 

Ce qui justifie et généralise maintenant pleinement les expressions de Cp et Cv du cours 6. 

dU = δQrev(T ,V )( )− pdV = CVdT + l − p( )dV

dH = δQrev(T ,P)( ) +Vdp = CPdT + k +V( )dP

CV = ∂U
∂T

⎛
⎝⎜

⎞
⎠⎟V

CP =
∂H
∂T

⎛
⎝⎜

⎞
⎠⎟ P

Les relations de Maxwell :
∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ T

= ∂p
∂T

⎛
⎝⎜

⎞
⎠⎟V

∂S
∂p

⎛
⎝⎜

⎞
⎠⎟ T

= − ∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ p

Permettent d'écrire les première et deuxième relations de Clapeyron :

l = T ∂p
∂T

⎛
⎝⎜

⎞
⎠⎟V

k = −T ∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ p

l et k dépendent uniquement de l'équation d'état du milieu

PG : Thermodynamique

C’est à dire l=Tpαp et k=-TVαv
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique

Expérience du quotidien :

o Quand on tire avec une force f sur un fil élastique, sa longueur l change

o Quand on chauffe ou refroidit le fil, la température T et sa longueur l change

Il y a deux manières de faire varier l : en agissant avec T ou bien avec f

o Les deux phénomènes doivent être liés par des coefficients communs

o On a identifié les variables d'état T, f et l

Le fil a une longueur l déterminée par T et f

o Il existe une fonction d'état du fil : g(l, T, f) = 0

dl = ∂l
∂ f

⎛
⎝⎜

⎞
⎠⎟ T
df + ∂l

∂T
⎛
⎝⎜

⎞
⎠⎟ f

dT

df = ∂ f
∂l

⎛
⎝⎜

⎞
⎠⎟ T
dl + ∂ f

∂T
⎛
⎝⎜

⎞
⎠⎟ l
dT

dT = ∂T
∂l

⎛
⎝⎜

⎞
⎠⎟ f

dl + ∂T
∂ f

⎛
⎝⎜

⎞
⎠⎟ l
df

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique

Six coefficients thermoélastiques reliés entre eux par les relations entre dérivées 

partielles. Deux seulement suffisent car on a :

∂ f
∂T

⎛
⎝⎜

⎞
⎠⎟ l

∂T
∂l

⎛
⎝⎜

⎞
⎠⎟ f

∂l
∂ f

⎛
⎝⎜

⎞
⎠⎟ T

= −1 ∂l
∂ f

⎛
⎝⎜

⎞
⎠⎟ T

∂ f
∂l

⎛
⎝⎜

⎞
⎠⎟ T

= 1 etc..

On utilise souvent les coefficients de dilatation thermique, αl, et le module d'élasticité en 

traction du matériau (module de Young), ET, (s : section du fil)

α l =
1
l

∂l
∂T

⎛
⎝⎜

⎞
⎠⎟ f

ET =
l
s

∂ f
∂l

⎛
⎝⎜

⎞
⎠⎟ T

dl = l
sET

df + lα ldT

df = sET

l
dl − sETα ldT

dT = 1
lα l

dl − 1
sETα l

df

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique
• Coefficients calorimétriques.

dU = TdS + fdl
dH = TdS − ldf
dF = −SdT + fdl
dG = −SdT − ldf

⎧

⎨
⎪⎪

⎩
⎪
⎪

H =U − fl
F =U −TS
G = H −TS

Energie interne

Enthalpie

Energie libre

Enthalpie libre

• Les variables sur lesquelles on peut agir facilement sont T et f : La fonction thermodynamique la mieux 

adaptée est l'enthalpie libre, G(T,f).

• Autrement dit on est intéressé à la variation de l avec T ou f, c’est à dire (∂l/∂T)f ou (∂l/∂f)T donc il faut choisir 

la fonction d’état dont les variables naturelles sont T et f : c’est G.

Relation de Maxwell à partir de G :
∂S
∂ f

⎛
⎝⎜

⎞
⎠⎟ T

= ∂l
∂T

⎛
⎝⎜

⎞
⎠⎟ f

= lα l

• Fil métallique : le désordre cristallin augmente quand f et l croissent

Un fil métallique s'allonge quand on le chauffe, à f constant.

∂S
∂ f

⎛
⎝⎜

⎞
⎠⎟ T

= ∂l
∂T

⎛
⎝⎜

⎞
⎠⎟ f

= lα l > 0

• Fil polymère : le désordre diminue quand f et l croissent

Un fil en caoutchouc rétrécit quand on le chauffe, à f constant.

∂S
∂ f

⎛
⎝⎜

⎞
⎠⎟ T

= ∂l
∂T

⎛
⎝⎜

⎞
⎠⎟ f

= lα l < 0
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique

• Coefficients calorimétriques.

	dF = −SdT + fdlEnergie libre

Autre expérience de cours où on mesure la force, f, à longueur constante, on 

prend l’énergie libre, F(T,l) dont les variables naturelles sont T et l.

Relation de Maxwell à partir de F :

• Fil métallique : le désordre cristallin augmente quand f et l croissent

- f diminue quand on chauffe à l constant

Le poids indiqué par la balance P =  mg-f augmente.

• Fil polymère : le désordre diminue quand f et l croissent

- f augmente quand on chauffe à l constant

Le poids indiqué par la balance P =  mg-f diminue.

PG : Thermodynamique
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= .
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Donc si S croit ou décroit de manière similaire 

avec f et l alors

		
ET =

l
s

∂ f
∂l

⎛
⎝⎜

⎞
⎠⎟ T

>0
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique

• Coefficients calorimétriques.

o Capacité calorifique pratique : dT à force de traction constante

o On s’intéresse à la fonction d’état qui s’apparente le plus à δQ, c’est TdS

o Choix des variables pour TdS : on cherche sa variation avec T et f qui sera 

constant, donc on veut exprimer TdS avec les variables T et f. Cela va nous 

donner une première expression de Cf.

o Pour une autre expression de la capacité calorifique Cf,  on le reporte dans la 

fonction thermodynamique qui a du TdS et du df, c’est H. Cela va nous donner 

une deuxième expression de Cf.

δQrev = TdS = T
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟ f

dT +T ∂S
∂ f

⎛
⎝⎜

⎞
⎠⎟ T
df = CfdT +T ∂l

∂T
⎛
⎝⎜

⎞
⎠⎟ f

df = CfdT +Tlα ldf

dH = TdS − ldf = CfdT + l Tα l −1( )df

C f = T
∂S
∂T

⎛
⎝⎜

⎞
⎠⎟ f

= ∂H
∂T

⎛
⎝⎜

⎞
⎠⎟ f
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Coefficients thermoélastiques et calorimétriques 

Exemple : analyse thermodynamique d'un fil élastique

• Coefficients calorimétriques.

Suggestion d’exercice : établir des relations semblables pour Cl

• Traction adiabatique réversible d'un fil élastique. dS = 0 :

		
C f dT +Tlα ldf =0 ⇒ dT

T
= −

lα l

C f

df

Un fil métallique se refroidit quand on l'allonge ( αl >0)

Un fil en caoutchouc se réchauffe quand on l'allonge ( αl <0)

PG : Thermodynamique

Indication :
• Pour Cl, on va exprimer TdS en fonction de dT et dl, ce qui donne une première 

expression de Cl.
• On le reporte dans la fonction thermodynamique qui a du TdS et du dl, c’est U, 

ce qui donne une deuxième expression de Cl.
• On peut aussi écrire une relation de Maxwell impliquant (∂S/∂l)T, et les 

coefficients thermoélastiques du matériau, pour cela il faut choisir la fonction 
thermodynamique qui a l et T comme variables naturelles, c’est F.
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Coefficients calorimétriques

On pourrait faire le même genre d'analyse avec :

o Une pile

o Un milieu magnétique

o Une membrane élastique

o Des spins dans un champs magnétique

o Un écosystème

o L'économie

o Une étoile

o …
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1 Y a t'il un choix de variables d'états et de fonction d'état, 
mieux adapté qu'un autre à un problème donné ?

3 Que peut on dire dans un cas plus général quand :
o Le système peut échanger de la matière
o Le travail prend d'autres formes que –pdV
o On a affaire à autre chose qu'un gaz parfait

2 Choix des coefficients élastiques et calorimétriques ?

Les objectifs du cours 14
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Fonctions homogènes (rappel exercice cours d'Analyse II)

Compléments ou rappels mathématiques II

o Définition, fonction homogène d'ordre k :

o Théorème d'Euler : une fonction est homogène d'ordre k si et seulement si :

o Pour k = 1 :

f (λx1,λx2...λxn ) = λ k f (x1, x2...xn )

		
xi

i=1

n

∑ ∂ f
∂xi

= kf (x1 ,x2...xn)

f ( xi=1...n{ }) = xi
i=1

n

∑ ∂ f
∂xi
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Systèmes ouverts

Il devient important de bien compter toutes les variables d'états :

Système ouvert : le système 

échange de la matière et de 

l'énergie avec l'extérieur.
atomesénergie

travail ou chaleur

+ + -
-

Cours 1 :

Les variables extensives "naturelles" pour l'énergie interne, U, sont 

l'entropie S et le volume V : U(S,V)
dU = TdS − pdV

En toute généralité, le système est aussi matériel, donc U dépend aussi 

nécessairement de la quantité de matière (masse, m ou nombre de particules, n ou 

nombre de moles, N) : U(S,V,n)
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Systèmes ouverts

• L'échange de matière avec l'extérieur ou bien du même corps entre deux phases 

différentes a un coût énergétique proportionnel à la quantité de matière échangée, dn. 

Le coefficient de proportionnalité s'appelle le potentiel chimique, µ : 

• La différentielle de l'énergie interne s'écrit : 

	dU =TdS − pdV + µdn

• Lorsqu'il y a plusieurs espèces chimiques (qui entrent/sortent du système ou bien qui 

apparaissent/disparaissent dans le cas de changements de phase ou de réactions 

chimiques) : 

dU = TdS − pdV + µkdnk
k
∑

Note : attention aux unités. Selon les domaines µ est exprimé par moles µdN, par 

molécules µdn ou par unité de masse µdm

• Energie interne, U

Equation de Gibbs

T = ∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V ,nk

p = − ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,nk

µk =
∂U
∂nk

⎛
⎝⎜

⎞
⎠⎟ S ,V ,nl≠k
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Systèmes ouverts

• Energie interne, U

+ =U(S,V,n) U(S,V,n) U(2S,2V,2n) = 2×U(S,V,n)

o U(S,V,n) est une fonction homogène de degré 1.

Théorème d'Euler :

		
U = S ∂U

∂S
⎛
⎝⎜

⎞
⎠⎟ V ,nk

+V ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,nk

+ nk
∂U
∂nk

⎛

⎝⎜
⎞

⎠⎟ S ,V ,nl≠kk
∑

Equation entière ou Equation entière de GibbsU = TS − pV + µknk
k
∑
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Fonctions thermodynamiques

• Energie interne, U

En différentiant l'équation entière de Gibbs :

dU = TdS + SdT − pdV −Vdp + µkdnk
k
∑ + nkdµk

k
∑

Or : 

⇒ Equation de Gibbs-DuhemSdT −Vdp + nkdµk
k
∑ = 0

dU = TdS − pdV + µkdnk
k
∑
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Fonctions thermodynamiques

Equation de Gibbs-Duhem

Jusque ici on s'intéressait uniquement à des variations d'entropie ∆S. L'équation entière 

nécessite de définir une valeur absolue pour l'entropie :

Troisième principe de la thermodynamique (Postulat de Nernst-Planck) :

L'entropie d'un corps pur tend vers 0 quand la température tend vers 0 K.

SdT −Vdp + nkdµk
k
∑ = 0

PG : Thermodynamique

Remarque 1 : Pour que l'entropie ne diverge pas quand la 

température tend vers 0, cela implique que la capacité 

calorifique de tout système tend vers 0 avec T. 		

δQ
TTi

0

∫ = C(T)dT
TTi

0

∫ converge ⇒ lim
T→0

C(T)=0

Remarque 2 : L'impossibilité d'atteindre la température du 0 absolu est une conséquence du 

troisième principe de la thermodynamique.

Equation entière de GibbsU = TS − pV + µknk
k
∑
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Systèmes ouverts

Et avec la même démarche :

Forme différentielleForme entière

Energie interne

Enthalpie

Energie libre

Enthalpie libre

Grand potentiel

Entropie

dU = TdS − pdV + µkdnk
k
∑

dH = TdS +Vdp + µkdnk
k
∑

dF = −SdT − pdV + µkdnk
k
∑

dG = −SdT +Vdp + µkdnk
k
∑

dΦG = −SdT − pdV − nkdµk
k
∑

dS = 1
T
dU + p

T
dV − 1

T
µkdnk

k
∑

U = TS − pV + µknk
k
∑

H =U + pV = TS + µknk
k
∑

F =U −TS = − pV + µknk
k
∑

G = H −TS = µknk
k
∑

ΦG =U −TS − nk µk
k
∑

S = U
T
− pV
T

+ 1
T

µknk
k
∑
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Systèmes ouverts

Potentiel chimique :

Relations de Maxwell :

µk =
∂U
∂nk

⎛
⎝⎜

⎞
⎠⎟ S ,V ,nl≠k

µk =
∂F
∂nk

⎛
⎝⎜

⎞
⎠⎟ T ,V ,nl≠k

µk =
∂H
∂nk

⎛
⎝⎜

⎞
⎠⎟ P,S ,nl≠k

µk =
∂G
∂nk

⎛
⎝⎜

⎞
⎠⎟ P,T ,nl≠k

µk = −T ∂S
∂nk

⎛
⎝⎜

⎞
⎠⎟U ,V ,nl≠k

∂p
∂S

⎛
⎝⎜

⎞
⎠⎟V ,nk

= − ∂T
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,nk

∂µk
∂V

⎛
⎝⎜

⎞
⎠⎟ S ,nk

= − ∂p
∂nk

⎛
⎝⎜

⎞
⎠⎟ S ,V ,nl≠k

∂µk
∂p

⎛
⎝⎜

⎞
⎠⎟ T ,nk

= ∂V
∂nk

⎛
⎝⎜

⎞
⎠⎟ p,T ,nl≠k

∂µk
∂T

⎛
⎝⎜

⎞
⎠⎟ p,nk

= − ∂S
∂nk

⎛
⎝⎜

⎞
⎠⎟ p,T ,nl≠k

… et beaucoup d'autres …
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Signification physique de ∆U, ∆H, ∆F, ∆G 

Système fermé, en contact avec un thermostat unique à la température T0, échangeant 

un travail W lors d'une transformation. Les températures initiales et finales sont T0, mais 

peuvent être différentes durant la transformation.

		

∆U =Q+W

∆STh =
−Q
T0

=W −∆U
T0

∆STot = ∆STh +∆S =
W −∆U
T0

+∆S ≥0

W = ∆U −T0 ∆S +T0 ∆STot
W = ∆F +T0 ∆STot
W ≥∆F
Wmoteur = −W ≤ −∆F

• Lors d'une transformation isotherme, ∆F est le travail minimum nécessaire pour 

effectuer la transformation.

• Lors d'une transformation isotherme, ∆F est le travail maximum que peut fournir le 

système lors de la transformation. 

• Lors d'un cycle ∆F=0, on retrouve l'interdit de Kelvin : Wmonotherme ≥ 0

∆U
∆S

Réservoir de chaleur @ T0
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Equilibre et potentiel thermodynamique

Un système fermé à volume et température constants évolue spontanément de sorte à 

minimiser son énergie libre. L'énergie libre joue le rôle d'une énergie potentielle.

Evolution spontanée d'un système fermé à volume et température constants.

Exemple :

T0
P1

P2Volume total fixe
Paroi mobile

δW = dF +T0dSTot
δW ≥ dF
δW = 0
dFSpontanée ≤ 0∆U

∆S

Réservoir de chaleur @ T0
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Signification physique de ∆U, ∆H, ∆F, ∆G 

Système fermé, en contact avec un unique réservoir de chaleur (thermostat) à la 

température T0, et un réservoir de travail (isobare, P0) échangeant un travail utile Wu lors 

d'une transformation. Les températures et pression initiales et finales sont P0 et T0, mais 

peuvent être différentes durant la transformation.

		

∆U =Q+Wu −P0 ∆V

∆STh =
−Q
T0

=
Wu −P0 ∆V −∆U

T0

∆STot = ∆STh +∆S =
Wu −P0 ∆V −∆U

T0
+∆S ≥0

Wu = ∆U +P0 ∆V −T0 ∆S +T0 ∆STot
Wu = ∆G+T0 ∆STot
Wu ≥∆G
Wu ,moteur = −Wu ≤ −∆G

• Lors d'une transformation isotherme et isobare, ∆G est le travail nécessaire minimum 

à fournir pour effectuer la transformation.

• Lors d'une transformation isotherme et isobare, ∆G est le travail maximum que peut 

fournir le système lors de la transformation. Exemple : une pile électrique, une 

réaction chimique à P et T constant

∆U
∆S

Réservoir de 
travail @ P0

Réservoir de chaleur @ T0

Wu
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Equilibre et potentiel thermodynamique

Un système fermé à pression et température constants évolue 

spontanément de sorte à minimiser son enthalpie libre. 

L'enthalpie libre joue le rôle d'une énergie potentielle.

Evolution spontanée d'un système fermé à pression et température constants.

δWu = dG +T0dSTot
δWu ≥ dG
δWu = 0
dGspontanée ≤ 0

∆U
∆S

Réservoir de 
travail @ P0

Réservoir de chaleur @ T0

Wu
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T0

P1

P2

Pression fixe
Parois mobiles
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Equilibre et potentiel thermodynamique

Un système fermé à volume et entropie constants 

évolue spontanément de sorte à minimiser son 

énergie interne. L'énergie interne joue le rôle d'une 

énergie potentielle.

De la même manière :

dUspontanée ≤ 0∆U

∆H

Réservoir de 
travail @ P0

Un système fermé à pression et entropie 
constants évolue spontanément de sorte 

à minimiser son enthalpie. L'enthalpie 

joue le rôle d'une énergie potentielle.

dH spontanée ≤ 0

PG : Thermodynamique

P1

P2Volume total fixe
Paroi mobile

P1

P2

Cours 14 35/39



Equilibre et potentiel thermodynamique

• Résumé :

Intensive Extensive

P V

T S

µ n

Variables conjuguées P V

T
Enthalpie libre G

dGspontané ≤ 0

G minimum

Energie libre F
dFspontané ≤ 0

F minimum

S
Enthalpie H

dHspontané ≤ 0

H minimum

Energie interne U
dUspontané ≤ 0

U minimum

Pour un système ouvert, quelque soit les conditions 

opératoires la condition d'évolution spontanée devient :
µkdnk

k
∑ ≤ 0

Variables "naturelles"

Potentiel thermodynamique pour un système fermé 

quand ses variables "naturelles" sont constantes.
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Equilibre et potentiel thermodynamique

Exemple : osmose

PG : Thermodynamique

		µ = µ(0)+RTLn(1− x)
x : concentration molaire du soluté
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Fonctions thermodynamiques1

Potentiel thermodynamique6

Relations de Maxwell2

Potentiel chimique3

Equation entière de Gibbs4

Equation de Gibbs-Duhem5

L’essentiel du cours 14
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Expériences de cours
Expériences auditoires EPFL : auditoires-physique.epfl.ch

Chaine YouTube : www.youtube.com/channel/UC4htKGfCRRkFyIqAo8DGocg

Contraction du caoutchouc

OsmoseEffet thermo-élastique
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C'est fini !

Bonne chance et tous mes vœux de 
réussite pour l'examen

A theory is the more impressive the greater the simplicity of its premises, the more different kinds of things it relates, and the more 
extended its area of applicability. Therefore the deep impression that classical thermodynamics made upon me. It is the only physical 
theory of universal content which I am convinced will never be overthrown, within the framework of applicability of its basic concepts.

         Albert Einstein
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